If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2-3=0
a = 8; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·8·(-3)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*8}=\frac{0-4\sqrt{6}}{16} =-\frac{4\sqrt{6}}{16} =-\frac{\sqrt{6}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*8}=\frac{0+4\sqrt{6}}{16} =\frac{4\sqrt{6}}{16} =\frac{\sqrt{6}}{4} $
| 8z^2−3=0 | | 2d^2+d-3=0 | | -5k^2−9k−4=0 | | -5k2−9k−4=0 | | 2(h+1=6 | | 7(d+5)+12=15 | | 7(x-5)+12=15 | | -9t^2-7t=0 | | 7x^2-3=20x | | 7m^2+8m=0 | | –2|h–7|=–28 | | -5y^2+5y=0 | | 3s2+30s+50=0 | | -4x+10=-5x+15 | | 2-3+5(2x+15)=36 | | 9n^2+8n=0 | | 3x-8=5x+1 | | -2=n=3 | | E^(2x)=1/8 | | 6x-10x+10=-5x+15 | | w+3/4=24 | | -4x+9=-5x+15 | | .5x+4=2/3x-2 | | -4x+11=-5x+15 | | 10k-1=6k-43 | | 2x3-6x2-8x+24=0 | | 2x+1=2(2x-3) | | r^2+8r+30=0 | | 4x2+4+-5x+x+-2x2+8=0 | | 3(x-2)-4(x-5)-44=6(x-5)-7x | | 4×+5+3x=65 | | 3x^2+13x-28=2x^2+2 |